Quantum State Transfer on Non-Complete Extended P-Sum of the Path on Three Vertices

Dr. Hiranmoy Pal ${ }^{1}$
${ }^{1}$ Department of Mathematics
National Institute of Technology Rourkela

4th June, 2021

Introduction

- Continuous-time quantum walk (CTQW) in Quantum Algorithmic Problems was first used by Farhi and Gutmann.
E. Farhi, S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58:915-928 (1998).
- CTQW plays an important role in studying several Quantum transportation phenomena.
- Quantum State Transfer is one such phenomena where the characteristic vector of a initial vertex is transited to the characteristic vector of an another vertex.

We discuss two types of state transfer:

- Perfect state transfer (PST) \longrightarrow introduced by Bose
S. Bose, Quantum communication through an unmodulated spin chain, Physical Review Letters, 91(20):207901 (2003).
- Pretty good state transfer (PGST) \longrightarrow introduced by Chris Godsil
C. Godsil, State transfer on graphs, Discrete Math., 312(1): 129-147 (2012).

State transfer has significant applications (see [1, 7]) in

- Quantum Information Processing
- Cryptography

Definition

The transition matrix [9] of a graph G with adjacency matrix A is

$$
H(t):=\exp (-i t A)=\sum_{n=1}^{\infty} \frac{(-i t)^{n}}{n!} A^{n}, t \in \mathbb{R} .
$$

Let u and v be two vertices in G.

- PST occurs at τ if

$$
\left|\mathbf{e}_{\mathbf{u}}{ }^{T} H(\tau) \mathbf{e}_{\mathbf{v}}\right|=1
$$

- PGST occurs w.r.t. a sequence t_{k} if

$$
\lim _{k \rightarrow \infty} H\left(t_{k}\right) \mathbf{e}_{\mathbf{u}}=\gamma \mathbf{e}_{\mathbf{v}},|\gamma|=1
$$

Remark: Continuous-time quantum walk can also be defined with respect to the Laplacian matrix as well.

An Example

- The adjacency matrix of P_{2} is

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- Note that

$$
A^{n}= \begin{cases}l & \text { if } n \text { is even } \\ A & \text { if } n \text { is odd }\end{cases}
$$

- Transition matrix is

$$
\begin{aligned}
H(t)=\sum_{n=1}^{\infty} \frac{(-i t)^{n}}{n!} A^{n} & =\cos (t) I-i \sin (t) A \\
& =\left(\begin{array}{cc}
\cos (t) & -i \sin (t) \\
-i \sin (t) & \cos (t)
\end{array}\right)
\end{aligned}
$$

- Hence P_{2} admits PST at $\frac{\pi}{2}$.

Lemma 1 ([9])

If a graph G admits perfect state transfer from u to v, then

$$
\operatorname{Aut}(G)_{u}=\operatorname{Aut}(G)_{v}
$$

Proof.

Let P be a permutation matrix associated to an automorphism of G. If PST occurs between u and v then

$$
H(\tau) \mathbf{e}_{\mathbf{u}}=\gamma \mathbf{e}_{\mathbf{v}}, \quad \gamma \in \mathbb{C},|\gamma|=1
$$

Note that the transition matrix $H(t)$ is a polynomial in A. Since P commutes with A, P commutes with $H(t)$ as well. This gives

$$
H(\tau)\left(P \mathbf{e}_{\mathbf{u}}\right)=P\left(H(\tau) \mathbf{e}_{\mathbf{u}}\right)=\gamma P \mathbf{e}_{\mathbf{v}}
$$

Graphs without PST

More Examples

Example 1 (Graphs with/without PST)

- The path P_{2} and P_{3} at $\frac{\pi}{2}$ and $\frac{\pi}{\sqrt{2}}$, respectively. See $[4,5]$.
- Cartesian powers of P_{2} and P_{3} at $\frac{\pi}{2}$ and $\frac{\pi}{\sqrt{2}}$, respectively. See $[4,5]$.
- Cubelike graphs (or NEPS of P_{2}) at $\frac{\pi}{2}$ and $\frac{\pi}{4}$. See $[2,3]$.
- No PST: Paths with more than three vertices. See $[4,9]$.

Example 2 (Graphs with/without PGST)

- P_{n} where n is either $2^{k} ; p ; 2 p$ ($p \rightarrow$ odd prime). See [10].
- Double Star. See [8].
- No PGST: Complete graphs with more than two vertices. See [9]
- No PGST: Vertex transitive graphs of odd order.See [9]

Non-complete Extended P-Sum (NEPS)

- The NEPS [6] of n graphs G_{1}, \ldots, G_{n} with $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ is denoted by

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{n} ; \Omega\right)
$$

Non-complete Extended P-Sum (NEPS)

- The NEPS [6] of n graphs G_{1}, \ldots, G_{n} with $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ is denoted by

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{n} ; \Omega\right)
$$

- This NEPS has the vertex set $V\left(G_{1}\right) \times \cdots \times V\left(G_{n}\right)$.

Non-complete Extended P-Sum (NEPS)

- The NEPS [6] of n graphs G_{1}, \ldots, G_{n} with $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ is denoted by

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{n} ; \Omega\right)
$$

- This NEPS has the vertex set $V\left(G_{1}\right) \times \cdots \times V\left(G_{n}\right)$.
- Two vertices $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ iff there exists $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \Omega$ such that

Non-complete Extended P-Sum (NEPS)

- The NEPS [6] of n graphs G_{1}, \ldots, G_{n} with $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ is denoted by

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{n} ; \Omega\right)
$$

- This NEPS has the vertex set $V\left(G_{1}\right) \times \cdots \times V\left(G_{n}\right)$.
- Two vertices $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ iff there exists $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \Omega$ such that
(1) $x_{i}=y_{i}$ exactly when $\beta_{i}=0$, and
(2) $x_{i} \sim y_{i}$ in G_{i} exactly when $\beta_{i}=1$.

Non-complete Extended P-Sum (NEPS)

- The NEPS [6] of n graphs G_{1}, \ldots, G_{n} with $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ is denoted by

$$
\operatorname{NEPS}\left(G_{1}, \ldots, G_{n} ; \Omega\right)
$$

- This NEPS has the vertex set $V\left(G_{1}\right) \times \cdots \times V\left(G_{n}\right)$.
- Two vertices $\left(x_{1}, \ldots, x_{n}\right) \sim\left(y_{1}, \ldots, y_{n}\right)$ iff there exists $\left(\beta_{1}, \ldots, \beta_{n}\right) \in \Omega$ such that
(1) $x_{i}=y_{i}$ exactly when $\beta_{i}=0$, and
(2) $x_{i} \sim y_{i}$ in G_{i} exactly when $\beta_{i}=1$.
- If all the factor graphs are G then we simply write $\operatorname{NEPS}_{n}(G, \Omega)$.

Suppose G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2}.

Suppose G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2}.

Cartesian Product

- The Cartesian product of G_{1} and G_{2} is denoted by $G_{1} \square G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff
(1) either $u_{1} \sim v_{1}$ in G_{1} and $u_{2}=v_{2}$, or
(2) $u_{1}=v_{1}$ and $u_{2} \sim v_{2}$ in G_{2}.

Suppose G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2}.

Cartesian Product

- The Cartesian product of G_{1} and G_{2} is denoted by $G_{1} \square G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff
(1) either $u_{1} \sim v_{1}$ in G_{1} and $u_{2}=v_{2}$, or
(2) $u_{1}=v_{1}$ and $u_{2} \sim v_{2}$ in G_{2}.

It is a NEPS of G_{1} and G_{2} with $\Omega=\{(1,0),(0,1)\}$.

Suppose G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2}.

Cartesian Product

- The Cartesian product of G_{1} and G_{2} is denoted by $G_{1} \square G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff
(1) either $u_{1} \sim v_{1}$ in G_{1} and $u_{2}=v_{2}$, or
(2) $u_{1}=v_{1}$ and $u_{2} \sim v_{2}$ in G_{2}.

It is a NEPS of G_{1} and G_{2} with $\Omega=\{(1,0),(0,1)\}$.

Kronecker Product

- The Kronecker product of G_{1} and G_{2} is denoted by $G_{1} \times G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff $u_{1} \sim v_{1}$ in G_{1} and $u_{2} \sim v_{2}$ in G_{2}.

Suppose G_{1} and G_{2} are two graphs with vertex sets V_{1} and V_{2}.

Cartesian Product

- The Cartesian product of G_{1} and G_{2} is denoted by $G_{1} \square G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff
(1) either $u_{1} \sim v_{1}$ in G_{1} and $u_{2}=v_{2}$, or
(2) $u_{1}=v_{1}$ and $u_{2} \sim v_{2}$ in G_{2}.

It is a NEPS of G_{1} and G_{2} with $\Omega=\{(1,0),(0,1)\}$.

Kronecker Product

- The Kronecker product of G_{1} and G_{2} is denoted by $G_{1} \times G_{2}$.
- It has the vertex set $V_{1} \times V_{2}$.
- $\left(u_{1}, u_{2}\right) \sim\left(v_{1}, v_{2}\right)$ iff $u_{1} \sim v_{1}$ in G_{1} and $u_{2} \sim v_{2}$ in G_{2}.

It is a NEPS of G_{1} and G_{2} with $\Omega=\{(1,1)\}$.

PST on NEPS of Graphs

- Christandl et al. showed: PST occurs in Cartesian powers of P_{2} and P_{3} in the following

PST on NEPS of Graphs

- Christandl et al. showed: PST occurs in Cartesian powers of P_{2} and P_{3} in the following
M. Christandl, N. Datta, A. Ekert and A. J. Landahl, Perfect state transfer in quantum spin networks, Physical Review Letters, 92:187902 (2004).
M. Christandl, N. Datta, T. Dorlas, A Ekert, A. Kay and A. J. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Physical Review A, 71:032312 (2005).

PST on NEPS of Graphs

- Christandl et al. showed: PST occurs in Cartesian powers of P_{2} and P_{3} in the following
M. Christandl, N. Datta, A. Ekert and A. J. Landahl, Perfect state transfer in quantum spin networks, Physical Review Letters, 92:187902 (2004).
M. Christandl, N. Datta, T. Dorlas, A Ekert, A. Kay and A. J. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Physical Review A, 71:032312 (2005).
- We see several characterizations of PST on NEPS of P_{2} in

PST on NEPS of Graphs

- Christandl et al. showed: PST occurs in Cartesian powers of P_{2} and P_{3} in the following
M. Christandl, N. Datta, A. Ekert and A. J. Landahl, Perfect state transfer in quantum spin networks, Physical Review Letters, 92:187902 (2004).
M. Christandl, N. Datta, T. Dorlas, A Ekert, A. Kay and A. J. Landahl, Perfect transfer of arbitrary states in quantum spin networks, Physical Review A, 71:032312 (2005).
- We see several characterizations of PST on NEPS of P_{2} in
A. Bernasconi, C. Godsil and S. Severini, Quantum networks on cubelike graphs, Physical Review A, 78:052320 (2008).
W. Cheung and C. Godsil, Perfect state transfer in cubelike graphs, Linear Algebra and Its Applications, 435(10):2468-2474 (2011).
- A natural question arises: Is there any NEPS of P_{3} admitting PST? (except the Cartesian powers!)
- A natural question arises: Is there any NEPS of P_{3} admitting PST? (except the Cartesian powers!)
- The problem was asked by D. Stevanović in
D. Stevanović, Application of graph spectra in quantum physics, in: D. Cevtković,
I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Zbornik radova 14(22), Mathematical Institute SANU, Belgrade, 85-111 (2011).
- A natural question arises: Is there any NEPS of P_{3} admitting PST? (except the Cartesian powers!)
- The problem was asked by D. Stevanović in
D. Stevanović, Application of graph spectra in quantum physics, in: D. Cevtković,
I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Zbornik radova 14(22), Mathematical Institute SANU, Belgrade, 85-111 (2011).
- We investigated quantum state transfer on NEPS of P_{3} in $[11,12]$ and found few partial characterizations on these graphs.

Theorem 3 (Sufficient Condition [11])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.

Theorem 3 (Sufficient Condition [11])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- for $\beta \in \Omega$, assume that $w t(\beta)$ is even (or odd).

Theorem 3 (Sufficient Condition [11])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- for $\beta \in \Omega$, assume that $w t(\beta)$ is even (or odd).
- $k=\min _{\beta \in \Omega} w t(\beta)$ and $\Omega^{*}=\{\beta \in \Omega: w t(\beta)=k\}$.

Theorem 3 (Sufficient Condition [11])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- for $\beta \in \Omega$, assume that $w t(\beta)$ is even (or odd).
- $k=\min _{\beta \in \Omega} w t(\beta)$ and $\Omega^{*}=\{\beta \in \Omega: w t(\beta)=k\}$.

If $\sum_{\beta \in \Omega^{*}} \beta \neq \mathbf{0}$ in \mathbb{Z}_{2}^{n} then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ allows PST at time $\frac{\pi}{(\sqrt{2})^{k}}$.

Example 4

The $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ with Ω as follows exhibits PST:

- $\Omega=\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $\Omega=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$.

Example 4

The $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ with Ω as follows exhibits PST:

- $\Omega=\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $\Omega=\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$.

Further we find that

Corollary 2 ([11])

- For any $n \in \mathbb{N} \backslash\{1\}$ and an odd positive integer $k<n$
- There exists $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$
so that $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ is connected and exhibits PST at $\frac{\pi}{(\sqrt{2})^{k}}$.

Corollary 3 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.

Corollary 3 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.
- Suppose NEPS $_{m}\left(P_{2}, \Omega^{\prime}\right)$ admits PST at $\frac{\pi}{2}$ or $\frac{\pi}{4}$.

Corollary 3 ([11])

- Let $N E P S_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.
- Suppose $N E P S_{m}\left(P_{2}, \Omega^{\prime}\right)$ admits PST at $\frac{\pi}{2}$ or $\frac{\pi}{4}$.

Then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right) \square \operatorname{NEPS}_{m}\left(P_{2}, \Omega^{\prime}\right)$ exhibits PST.

Corollary 3 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.
- Suppose NEPS $_{m}\left(P_{2}, \Omega^{\prime}\right)$ admits PST at $\frac{\pi}{2}$ or $\frac{\pi}{4}$.

Then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right) \square \operatorname{NEPS}_{m}\left(P_{2}, \Omega^{\prime}\right)$ exhibits PST.

Corollary 4 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3.

Corollary 3 ([11])

- Let $N E P S_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.
- Suppose NEPS $_{m}\left(P_{2}, \Omega^{\prime}\right)$ admits PST at $\frac{\pi}{2}$ or $\frac{\pi}{4}$.

Then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right) \square N E P S_{m}\left(P_{2}, \Omega^{\prime}\right)$ exhibits PST.

Corollary 4 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3.
- For a graph G suppose $\exists r \in \mathbb{R}$ so that $\frac{\lambda}{r}$ is an odd integer for every eigenvalue λ.

Corollary 3 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3 with k even.
- Suppose $N E P S_{m}\left(P_{2}, \Omega^{\prime}\right)$ admits PST at $\frac{\pi}{2}$ or $\frac{\pi}{4}$.

Then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right) \square N E P S_{m}\left(P_{2}, \Omega^{\prime}\right)$ exhibits PST.

Corollary 4 ([11])

- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies the conditions of Theorem 3.
- For a graph G suppose $\exists r \in \mathbb{R}$ so that $\frac{\lambda}{r}$ is an odd integer for every eigenvalue λ.

Then PST occurs in $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right) \times G$ at time $\frac{\tau_{k}}{r}$.

The graph $\operatorname{NEPS}_{n}\left(P_{3}, J-I\right) \times K_{m}, m$ even, allows PST at $\frac{\pi}{(\sqrt{2})^{n-1}}$.

PGST on NEPS of Graphs

- So far we considered $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with tuples of weight either even or odd (but not both!).

PGST on NEPS of Graphs

- So far we considered $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with tuples of weight either even or odd (but not both!).
- question is: What happens in a general Ω ?

PGST on NEPS of Graphs

- So far we considered $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with tuples of weight either even or odd (but not both!).
- question is: What happens in a general Ω ?

Denote
Ω_{e} : subset of Ω containing tuples with weight even.

PGST on NEPS of Graphs

- So far we considered $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with tuples of weight either even or odd (but not both!).
- question is: What happens in a general Ω ?

Denote

Ω_{e} : subset of Ω containing tuples with weight even.
Ω_{0} : subset of Ω containing tuples with weight odd.

PGST on NEPS of Graphs

- So far we considered $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with tuples of weight either even or odd (but not both!).
- question is: What happens in a general Ω ?

Denote

Ω_{e} : subset of Ω containing tuples with weight even.
Ω_{0} : subset of Ω containing tuples with weight odd.

Theorem 5 ([12])

- Let $\Omega \subset \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$, and
- both Ω_{e} and Ω_{0} are non-empty.

Then $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ does not exhibit PST.

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- Both Ω_{e}, Ω_{o} are non-empty.

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- Both Ω_{e}, Ω_{o} are non-empty.
- Suppose $k=\min _{\beta \in \Omega_{e}} w t(\beta)$ and $\Omega_{e}^{*}=\left\{\beta \in \Omega_{e}: w t(\beta)=k\right\}$.

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- Both Ω_{e}, Ω_{o} are non-empty.
- Suppose $k=\min _{\beta \in \Omega_{e}} w t(\beta)$ and $\Omega_{e}^{*}=\left\{\beta \in \Omega_{e}: w t(\beta)=k\right\}$.
- Suppose $I=\min _{\beta \in \Omega_{0}} w t(\beta)$ and $\Omega_{o}^{*}=\left\{\beta \in \Omega_{0}: w t(\beta)=I\right\}$.

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- Both Ω_{e}, Ω_{0} are non-empty.
- Suppose $k=\min _{\beta \in \Omega_{e}} w t(\beta)$ and $\Omega_{e}^{*}=\left\{\beta \in \Omega_{e}: w t(\beta)=k\right\}$.
- Suppose $I=\min _{\beta \in \Omega_{0}} w t(\beta)$ and $\Omega_{o}^{*}=\left\{\beta \in \Omega_{0}: w t(\beta)=I\right\}$.

Then PGST occurs in $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ if any one of the following holds:

PGST on NEPS of Path on Three Vertices

Theorem 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$ with $r(\Omega)=n$.
- Both Ω_{e}, Ω_{0} are non-empty.
- Suppose $k=\min _{\beta \in \Omega_{e}} w t(\beta)$ and $\Omega_{e}^{*}=\left\{\beta \in \Omega_{e}: w t(\beta)=k\right\}$.
- Suppose $I=\min _{\beta \in \Omega_{0}} w t(\beta)$ and $\Omega_{o}^{*}=\left\{\beta \in \Omega_{0}: w t(\beta)=I\right\}$.

Then PGST occurs in $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ if any one of the following holds:
(1) $\sum_{\beta \in \Omega_{0}^{*}} \beta \neq \mathbf{0}$ in \mathbb{Z}_{2}^{n}, or
(2) $\sum_{\beta \in \Omega_{e}^{*}} \beta \neq \mathbf{0}$ in \mathbb{Z}_{2}^{n}.

PGST on Cartesian Product

Theorem 7 ([12])

- Let a graph G_{1} is periodic at a vertex at τ,

PGST on Cartesian Product

Theorem 7 ([12])

- Let a graph G_{1} is periodic at a vertex at τ,
- Let a graph G_{2} exhibits PST at η.

PGST on Cartesian Product

Theorem 7 ([12])

- Let a graph G_{1} is periodic at a vertex at τ,
- Let a graph G_{2} exhibits PST at η.

If τ and η are linearly independent over \mathbb{Q} then $G_{1} \square G_{2}$ admits PGST.

PGST on Cartesian Product

Theorem 7 ([12])

- Let a graph G_{1} is periodic at a vertex at τ,
- Let a graph G_{2} exhibits PST at η.

If τ and η are linearly independent over \mathbb{Q} then $G_{1} \square G_{2}$ admits PGST.

Corollary 5 ([12])

- Let a graph G be integral.
- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies all the conditions of Theorem 3 with k odd.

Then the Cartesian product $G \square N E P S_{n}\left(P_{3}, \Omega\right)$ admits $P G S T$.

PGST on Cartesian Product

Theorem 7 ([12])

- Let a graph G_{1} is periodic at a vertex at τ,
- Let a graph G_{2} exhibits PST at η.

If τ and η are linearly independent over \mathbb{Q} then $G_{1} \square G_{2}$ admits PGST.

Corollary 5 ([12])

- Let a graph G be integral.
- Let $\operatorname{NEPS}_{n}\left(P_{3}, \Omega\right)$ satisfies all the conditions of Theorem 3 with k odd.

Then the Cartesian product $G \square N E P S_{n}\left(P_{3}, \Omega\right)$ admits $P G S T$.

Example: $K_{m} \square N E P S_{n}\left(P_{3}, \Omega\right)$ exhibits PGST with appropriate Ω

- PST cannot occur from a vertex u to two different vertices v and w.
- PST cannot occur from a vertex u to two different vertices v and w.
- However, PGST can occur from a vertex u to two different vertices v and w.
- PST cannot occur from a vertex u to two different vertices v and w.
- However, PGST can occur from a vertex u to two different vertices v and w.
- We illustrate this using $P_{2} \square P_{3}$.
- PST cannot occur from a vertex u to two different vertices v and w.
- However, PGST can occur from a vertex u to two different vertices v and w.
- We illustrate this using $P_{2} \square P_{3}$.

Corollary 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{m} \backslash\{\mathbf{0}\}$ and $\Omega^{\prime} \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$.

Corollary 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{m} \backslash\{\mathbf{0}\}$ and $\Omega^{\prime} \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$.
- Weight of each tuple in Ω is odd.

Corollary 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{m} \backslash\{\mathbf{0}\}$ and $\Omega^{\prime} \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$.
- Weight of each tuple in Ω is odd.
- Let $k=\min _{\beta \in \Omega} w t(\beta)$ and $\Omega^{*}=\{\beta \in \Omega: w t(\beta)=k\}$.

Corollary 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{m} \backslash\{\mathbf{0}\}$ and $\Omega^{\prime} \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$.
- Weight of each tuple in Ω is odd.
- Let $k=\min _{\beta \in \Omega} w t(\beta)$ and $\Omega^{*}=\{\beta \in \Omega: w t(\beta)=k\}$.

Then $\operatorname{NEPS}_{m}\left(P_{3}, \Omega\right) \square \operatorname{NEPS}_{n}\left(P_{2}, \Omega^{\prime}\right)$ admits PGST if any one of the following holds:

Corollary 6 ([12])

- Let $\Omega \subseteq \mathbb{Z}_{2}^{m} \backslash\{\mathbf{0}\}$ and $\Omega^{\prime} \subseteq \mathbb{Z}_{2}^{n} \backslash\{\mathbf{0}\}$.
- Weight of each tuple in Ω is odd.
- Let $k=\min _{\beta \in \Omega} w t(\beta)$ and $\Omega^{*}=\{\beta \in \Omega: w t(\beta)=k\}$.

Then $\operatorname{NEPS}_{m}\left(P_{3}, \Omega\right) \square \operatorname{NEPS}_{n}\left(P_{2}, \Omega^{\prime}\right)$ admits PGST if any one of the following holds:
(1) $\sum_{\beta \in \Omega^{*}} \beta \neq \mathbf{0}$ in \mathbb{Z}_{2}^{m},
(2) $\sum_{\beta \in \Omega^{\prime}} \beta \neq \mathbf{0}$ in \mathbb{Z}_{2}^{n}.

Reference I

[1] C. H. Bennett and G. Brassard. Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci., 560(part 1):7-11, 2014.
[2] A. Bernasconi, C. Godsil, and S. Severini. Quantum networks on cubelike graphs. Phys. Rev. A (3), 78(5):052320, 5, 2008.
[3] W.-C. Cheung and C. Godsil. Perfect state transfer in cubelike graphs. Linear Algebra Appl., 435(10):2468-2474, 2011.
[4] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl. Perfect transfer of arbitrary states in quantum spin networks. Physical Review A, 71:032312, Mar 2005.
[5] M. Christandl, N. Datta, A. Ekert, and A. J. Landahl. Perfect state transfer in quantum spin networks. Physical review letters, 92:187902, 2004.

Reference II

[6] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of graphs. Johann Ambrosius Barth, Heidelberg, third edition, 1995. Theory and applications.
[7] A. K. Ekert. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett., 67(6):661-663, 1991.
[8] X. Fan and C. Godsil. Pretty good state transfer on double stars. Linear Algebra Appl., 438(5):2346-2358, 2013.
[9] C. Godsil. State transfer on graphs. Discrete Math., 312(1):129-147, 2012.
[10] C. Godsil, S. Kirkland, S. Severini, and J. Smith. Number-theoretic nature of communication in quantum spin systems. Physical review letters, 109(5):050502, August 2012.
[11] H. Pal and B. Bhattacharjya. Perfect state transfer on NEPS of the path on three vertices. Discrete Math., 339(2):831-838, 2016.
[12] H. Pal and B. Bhattacharjya. Pretty good state transfer on some NEPS. Discrete Math., 340(4):746-752, 2017.

Thank You

